
CS 4530
Fundamentals of Software Engineering

Module 16: Refactoring and Technical Debt
Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

1

© 2023 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals
By the end of this lesson, you should be able to…

• Define refactoring, technical debt, and give examples.
• Explain how refactoring fits into agile process and help reduce technical debt
• Suggest when it may be appropriate to accrue technical debt and when it may

be appropriate to retire it

2

Refactoring
Refactoring is the process of applying transformations, refactorings, to a program
and the internal structure of the system is improved
Goals:

• keep program readable, understandable, and maintainable
• by eliminating small problems soon, you can avoid big troubles later

Characteristics:
• behavior-preserving, i.e. do not change what the program does
• incremental, i.e. proceeds in small steps with tests at each stage

3

Why Refactor?

4

Altered design will make testing easier
Altered design will improve maintainability
Fix sloppiness by programmers
New or anticipated requirements require a different design
Retire or avoid technical debt

When to refactor?
Refactoring is incremental redesign
Acknowledge that it is difficult to get design right the first time
When?

• adding new functionality,
• fixing a bug,
• doing code review, or
• any time

A key part of TDD!
Refactoring evolves design in increments
Refactoring reduces technical debt

5

Refactoring with TDD
Red: start writing failing “red-test”. Stop and check what needs to be written
Green: next, write simplest code that gets tests to “green”
Refactor: finally, focus on improving & enhancing code while keeping test green

6

Example

7

Original Code

Refactored Code # 1

function greeter (firstName : String, lastName : String) {
return "Hello, " + firstName + " " + lastName;

}
document.body.innerHTML = greeter(“Jane","Doe");

function greeter (firstName : String, lastName : String, greeting = "Hello, ") {
 return greeting + firstName + " " + lastName;
}
document.body.innerHTML = greeter(“Jane”,"Doe");

Refactored Code # 2
function greeter (firstName : String, lastName : String, greeting : String) {
 return greeting + firstName + " " + lastName;
}
document.body.innerHTML = greeter(“Jane","Doe“,"Hello, ");

Dad
Martin Fowler is the “father” of refactoring

8

“Any fool can write code that a
computer can understand

 Good programmers write code

that humans can understand”

The Book
A catalogue of refactorings, similar to the design patterns in the GoF book

• Names each transformation
• Helpful for team communication
• Names “bad smells” (triggers for refactorings)
• Discusses when and how to apply refactorings

Many refactorings are the inverse of another refactoring
• often there is not a unique “best” solution
• discussion of the tradeoffs

9

The List
Fowler gave colorful names to his “code smells”

10

Mysterious Name
Duplicated Code
Long Function
Long Parameter List
Global Data
Mutable Data
Divergent Change
Shotgun Surgery
Feature Envy
Data Clumps
Primitive Obsession
Repeated Switches

Loops
Lazy Element
Speculative Generality
Temporary Field
Message Chains
Middle Man
Insider Trading
Large Class
Alternative Classes with Different Interfaces
Data Class
Refused Bequest

https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec1
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec2
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec3
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec4
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec5
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec6
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec7
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec8
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec9
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec10
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec11
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec12
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec13
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec14
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec15
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec16
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec17
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec18
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec19
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec20
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec21
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec22
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec23

Renaming
Is the most common…

• Rename Function (124)
• Rename Variable (137)
• Rename Field (244)

We are often afraid to rename things, thinking it’s not worth the trouble, but a good
name can save hours of future puzzled incomprehension
Renaming is not just an exercise
When you are not happy with a name, it’s often a sign of a deeper design malaise.
Puzzling over a tricky name leads to significant improvements to your code

11

Remember:
Use Good Names!

Renaming
Luckily, VSC automates this and many other common transformations

12

Rename provides better intuition for renamed thing’s purpose

Extract Method enables reuse; avoids cut-and-paste; improves readability

Inline Method replace a method call with method’s body; often
intermediate step

Extract Local introduce a new local variable for an expression

Inline Local replace a local variable with the expression that defines its
value

Change Method Signature reorder a method’s parameters

Encapsulate Field introduce getter/setter methods

Convert Local Variable to Field sometimes useful to enable application of Extract Method

Local Refactorings

13

https://refactoring.guru/

Typescript-specific Refactoring https://www.jetbrains.com/help/webstorm/specific-typescript-refactorings.html

https://refactoring.guru/
https://www.jetbrains.com/help/webstorm/specific-typescript-refactorings.html

 aka Refactoring by Abstraction
Bad abstraction is worst than duplication

• (pieces of code that look the same, still represent different concepts).

Use “Rule of Three” – Three strikes and you refactor

Type-Related Refactorings

14

https://understandlegacycode.com/blog/refactoring-rule-of-three/

Generalize Declared
Type replace type of a declaration with more general type

Extract Interface create new interface, and update code to use it where
possible

Pull Up Members move methods and fields to a superclass

Infer Generic Type
Arguments infer type arguments for “raw” uses of generic types

Typescript-specific Refactoring https://www.jetbrains.com/help/webstorm/specific-typescript-refactorings.html

https://understandlegacycode.com/blog/refactoring-rule-of-three/
https://www.jetbrains.com/help/webstorm/specific-typescript-refactorings.html

Refactoring Benefits
Small incremental steps that preserve program behavior

• …simplify regression testing
Aiming for simple steps

• …allows for automation
Refactoring needs not proceed in a straight line

• …sometimes, you want to undo a step you did earlier
• …when you have insights for a better design
• Having a name for what you did makes undos easier

15

Refactoring Risks
Developer time is valuable: is this the best use of your time today?
Despite best intentions, may not be safe
Potential for version control conflicts

16

It brings us to Technical Debt

Not just code!

Technical Debt
… is the accumulation of internal problems in a code base
Internal because they don’t show as user-visible failures
Examples:

• Code Smells
• Missing tests
• Missing documentation
• Dependency on old versions of third-party systems
• Inefficient algorithms

18

Technical debt
…has costs, i.e. interest on the debt

Examples of Debt
Code Smells
Missing tests

Missing documentation
Dependency on versions of third-party

Inefficient/non-scalable algorithms

Examples of Cost
“Smelly” code is less flexible
need to revert breaking change
can’t figure out how to use
may have to take over maintenance
of old system
lose potential customers

19

Interest accrues over time

20

Cost

Time

Break even point

Invest time to paying
off technical debt
=> Refactoring

Make Technical Debt Visible
Here are the steps:

• Plan the ideal
• Track your actual
• Track what you spend on waste
• Put it all together

21https://www.scrum.org/resources/blog/making-tech-debt-visible

Help stakeholders visualize data (like progress, effect of debt, refactoring)

https://www.scrum.org/resources/blog/making-tech-debt-visible

Reasons to go into Debt
Prototyping

• If code will be discarded, or rewritten, don’t waste time perfecting it
Getting a product out the door

• Time is often crucial in a competitive environment
Fixing a critical failure

• People are waiting
Maybe a simple algorithm is good enough

• “Premature optimization is the root of all evil” — Tony Hoare, Donald Knuth

22

Architectural debt is costliest
Total cost of ownership generally higher than implementation-level issues; harder
to get out of choices of:

• Language
• Middleware frameworks
• Deployment pipeline

Consider:
• What are the quality attributes that our software needs to ultimately satisfy?
• How do these architectural decisions reflect those attributes?

23

Y2K bug as example of architectural debt
How many digits does it take to store a year?

24

$24,847 in 2023 USD

“I just never imagined anyone would
be using these systems 10 years

later, let alone 20.”

Kruchten, Nord, Ozkaya:
“Managing Technical Debt: Reducing Friction in Software Development”

Evolving languages make debt
Choice of language can cause technical debt, particularly if that language is rapidly evolving.
Consider JavaScript

25

Classes
Promises

PLUS:
2016: ES7 (Array.includes)
2017: ES8 (Async/Await)

2018: ES9 (rest/spread operator, async iterators)

Facebook’s debt

26
https://www.fastcompany.com/3028778/why-facebook-invented-a-new-php-derived-language-called-hack

https://www.fastcompany.com/3028778/why-facebook-invented-a-new-php-derived-language-called-hack

Facebook’s debt
Hack added new safety features…

• …automatic type inference
• …lets you specify types of variables
• …issues an error if code is logically inconsistent
• When a file changed, two versions had to be compared to deduce what must

be rechecked at a very fine-grained level
• “Hack enables us to dynamically convert our code one file at a time” - Facebook

Technical Lead HipHop VM (HHVM)

27
Facebook’s Runtime Engine supports PHP and Hack. https://hhvm.com/

Instagram’s debt

28https://thenewstack.io/instagram-makes-smooth-move-python-3/

https://thenewstack.io/instagram-makes-smooth-move-python-3/

Instagram’s debt
From Python 2 to 3

• Migrated in 10 months
• All work done directly in Master branch
• Upgraded all packages (Working Rule: not in Py3 => not used)

Examples of refactorings:
• Differences in unicode, str, bytes => add helper functions
• Differences in iterators, such as map => convert all maps to Py3 list
• Differences in dictionary order differences in the dumped JSON data

=> force sorted_keys in json.dump function

29
http://euccas.github.io/blog/20170616/how-instagram-moved-to-python-3.html PyCon 2017 Keynote Talk: https://www.youtube.com/watch?v=66XoCk79kjM

http://euccas.github.io/blog/20170616/how-instagram-moved-to-python-3.html
https://www.youtube.com/watch?v=66XoCk79kjM

Instagram’s debt
Dropped Python 2 in Feb 2017

30

Siri’s debt
Voice assistants are “dumb as a rock,” Satya Nadella (Microsoft’s chief executive)

• Clunky Code: Weeks to update code
• One big snowball!
• 6 weeks to build db for adding 1 word

31How Siri, Alexa and Google Assistant Lost the A.I. Race
https://www.nytimes.com/2023/03/15/technology/siri-alexa-google-assistant-artificial-intelligence.html

https://www.nytimes.com/2023/03/15/technology/siri-alexa-google-assistant-artificial-intelligence.html

Retire Technical Debt at Leisure
Set aside time to pay off technical debt:

• Google has (had?) “20%-time” for tasks such as this.
A new initiative can take on some technical debt:

• Refactoring at the start of a project.
Don’t keep on putting off!

• When a crisis hits, it’s too late
• Hasty fixes to unmaintainable code

multiplies problems
• Eventually mounting technical debt

can bury the team

32

Now back to you…
Suggested Activity

• Individually, Identify 5 candidates for Refactoring in your project code.
• Then come together as a group to share and discuss. Keep that list with you

to work on during the project.

33

Learning Goals
You should now be able to…

• Define refactoring, technical debt, and give examples.
• Explain how refactoring fits into agile process and help reduce technical debt
• Suggest when it may be appropriate to accrue technical debt and when it may

be appropriate to retire it

34

	CS 4530Fundamentals of Software EngineeringModule 16: Refactoring and Technical Debt
	Learning Goals
	Refactoring
	Why Refactor?
	When to refactor?
	Refactoring with TDD
	Example
	Dad
	The Book
	The List
	Renaming
	Renaming
	Local Refactorings
	Type-Related Refactorings
	Refactoring Benefits
	Refactoring Risks
	It brings us to Technical Debt
	Technical Debt
	Technical debt
	Interest accrues over time
	Make Technical Debt Visible
	Reasons to go into Debt
	Architectural debt is costliest
	Y2K bug as example of architectural debt
	Evolving languages make debt
	Facebook’s debt
	Facebook’s debt
	Instagram’s debt
	Instagram’s debt
	Instagram’s debt
	Siri’s debt
	Retire Technical Debt at Leisure
	Now back to you…
	Learning Goals

